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ABSTRACT

With the recognition of obesity as a global health crisis, researchers have
devoted greater effort to defining and understanding the pathophysiologi-
cal molecular pathways regulating the biology of adipose tissue and obesi-
ty. Obesity, the excessive accumulation of adipose tissue due to hyperpla-
sia and hypertrophy, has been linked to an increased incidence and aggres-
siveness of colon, hematological, prostate, and postmenopausal breast
cancer cancers. The increased morbidity and mortality of obesity-
associated cancers has been attributed to higher levels of hormones, adi-
pokines, and cytokines secreted by the adipose tissue. The increased
amount of adipose tissue also results in higher numbers of adipose strom-
al/stem cells (ASCs). These ASCs have been shown to impact cancer pro-
gression directly through several mechanisms, including the increased re-
cruitment of ASCs to the tumor site and increased production of cytokines
and growth factors by ASCs and other cells within the tumor stroma.
Emerging evidence indicates that obesity induces alterations in the biologic
properties of ASCs, subsequently leading to enhanced tumorigenesis and
metastasis of cancer cells. This review will discuss the links between obesi-
ty and cancer tumor progression, including obesity-associated changes in
adipose tissue, inflammation, adipokines and chemokines. Novel topics
will include a discussion of the contribution of ASCs to this complex system
with an emphasis on their role in the tumor stroma. The reciprocal and
circular feedback loop between obesity and ASCs as well as the mechan-
isms by which ASCs from obese patients alter the biology of cancer cells
and enhance tumorigenesis will be discussed. STem CeLLS 2014; 00:000-000

INTRODUCTION

More than one third of adults in the United States are
obese, which is a number that has increased significant-
ly in the last 10 years [1]. According to the World Health
Organization statistics, obesity rates across the globe
have almost doubled since 1980. The distinction be-
tween being overweight and obese is determined by
the body mass index (BMI), calculated based on the
height and weight of an individual. An individual with a
BMI of 24.9 to 29.9 is considered overweight, while a
person with a BMI greater than 30.0 is defined as ob-

STEM CELLS 2014;00:00-00 www.StemCells.com

ese. On a global scale, 1.4 billion adults meet the re-
quirements for being overweight and nearly 500 million
adults meet the requirements for being obese world-
wide [2].

In 2007, the World Cancer Research Fund employed
meta-analytic procedures to study the effects of obesity
on cancer incidence and mortality. They found that
higher levels of adiposity were associated with in-
creased rates of colorectal, postmenopausal breast, and
renal carcinomas [3].Furthermore, additional meta-
analysis confirmed an association between obesity and
several other cancers in both men and women, includ-
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ing endometrial, prostate, and esophageal cancers, ma-
lignant melanoma, hematological malignancies and
large B-cell lymphomas [4-13]. Clearly, a better under-
standing of the mechanism(s) by which obesity en-
hances tumorigenesis is both a necessity and a priority.

Types of Adipose Tissue and their Role in Ob-

esity

Historically, endocrinologists have divided adipose tis-
sue into two categories, white adipose tissue (WAT) or
brown adipose tissue (BAT). WAT is further subdivided
into unique depots based on the location and its func-
tion: visceral (around the organs) and subcutaneous
(between the muscle and the dermal fascia). The viscer-
al WAT stores excess energy but also provides physical
protection to the organs. For instance, perirenal fat is
superficial to the renal capsule and protects the kidney
from trauma. In contrast, the primary function of sub-
cutaneous WAT is to store excess triglycerides and re-
lease free fatty acids during extended periods of fasting,
starvation, or exercise. It has also been suggested that
subcutaneous WAT functions as a buffer during intake
of dietary lipids to protect the organs against the lipo-
toxicity of free fatty acid oxidation [14].

In contrast, BAT oxidizes chemical energy to produce
heat, through the actions of mitochondrial uncoupling
protein-1 (UCP1), as a defense against hypothermia
[15]. Human babies, who lack body hair or a protective
coat, have significant brown fat depots, presumably to
provide heat in the cold environment encountered fol-
lowing birth. As humans age, BAT levels decrease. How-
ever, recent studies have identified an additional type
of adipose tissue that is a hybrid between white adipose
tissue and brown adipose tissue, termed beige or brite
(brown/white) adipose tissue. Adults who have been
exposed to chronic cold conditions form brown fat-like
depots characterized by enhanced thermogenesis lo-
cated in the supraclavicular and neck region [16-21].
These brown fat-like depots maintain high levels of ex-
pression of UCP1 and appear morphologically similar to
brown fat. These brown fat-like depots have been lo-
cated in regions where white adipose depots are gener-
ally found [22, 23]. Unlike classical BAT, which is derived
from a myogenic factor 5 (Myf5) muscle-like cellular
lineage, the beige/brite adipocytes lack Myf5 expres-
sion [24].

While all adipose depot sites can increase in volume,
only an accumulation of WAT increases the risk of de-
veloping various diseases, including heart disease, can-
cer, metabolic syndrome, and stroke [25-28]. Extensive
reviews have focused on the association of obesity with
heart disease, metabolic syndrome, and stroke [29-35].
The focus of this review will be on the relationship be-
tween increased adiposity, the biology of adipose
stromal/stem cells (ASCs), and tumorigenesis.
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Adipose Tissue and Adipose Stromal/Stem
Cells (ASCs)

Once considered solely as an energy reservoir or ther-
mal insulator, adipose tissue is now being recognized as
a complex endocrine organ involved in energy homeos-
tasis, feeding, reproduction, and inflammation. Adipose
tissue is heterogeneous, containing adipocytes and cells
from the stromal vascular fraction, namely ASCs (15-
30%), endothelial cells (10-20%), pericytes (3-5%), gra-
nulocytes (10-15%), monocytes (5-15%), and lympho-
cytes (10-15%) [36].

Among the cell types within the stromal vascular frac-
tion, ASCs have recently been the focus of research be-
cause they have the potential to differentiate into me-
senchymal tissue such as osteocytes, chondrocytes, and
adipocytes, are immune privileged and have immuno-
modulatory properties. Because they do not express
MHC class Il molecules or costimulatory molecules [37,
38], ASCs are immune privileged. ASCs have a complex
biology in regards to their anti-inflammatory properties;
these cells inhibit natural killer cell activation, resulting
in impaired cytotoxicity processes [37]. ASCs reduce the
proliferation of B cells, reduce immunoglobulin produc-
tion, and suppress B cell functions [39]. These features
make ASCs ideal for tissue engineering and regenerative
medicine, since these cells have the potential to diffe-
rentiate into many cell types and immunomodulate the
immune system without causing rejection by the host
or the grafted cells [40-45].

Obesity Related Alterations to Adipose Tissue

and the Impact on Cancer

Obesity alters the physiological function of adipose tis-
sue, resulting in chronic inflammation, skewed secre-
tion of adipokines, and changes to the biology of ASCs.
Adipose tissue expansion in obesity increases the dis-
tance between the enlarging adipocytes and their vas-
culature, leading to localized hypoxia. Adipocytes can
grow up to 100-200 um in diameter and subsequently
exceed the typical diffusion distances of oxygen into
tissue [46, 47]. The oxygen content in expanded adipose
tissue is close to zero at 100 um distances from the vas-
culature, implying that increased adipocyte size and
adipocyte number results in significant hypoxia [47].
Furthermore, other studies have shown that despite the
substantial increase in adipose tissue associated with
obesity, neither cardiac output nor total blood flow to
the adipose tissue is increased [48, 49]. In obese mice,
the reduced blood perfusion and hypoxia appear to be
specific to WAT [50]. The lack of oxygen to the adipose
tissue results in the activation of hypoxia-induced factor
1-alpha (HIF-1a) and increased angiogenesis; however,
the response is insufficient to compensate for the grow-
ing adipocytes, which leads to chronic low-grade in-
flammation [51, 52]. It is postulated that this chronic
low-grade inflammation induces the excess secretion of
pro-inflammatory cytokines, chemokines, protease, and
protease inhibitors, such as tumor necrosis factor-alpha
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(TNF-a), interleukin 6 (IL-6), monocyte chemotactic pro-
tein 1 (MCP-1), leptin, and plasminogen activator inhibi-
tor type 1 (PAI-1), which lead to adipose tissue dysfunc-
tion [53, 54]. The role that each of these factors plays in
obesity and cancer will be presented in more detail.
TNF-a. TNF-a has an important role in the adaptive re-
sponse of the immune system and other organ systems.
TNF-a is an endogenous pyrogen that can induce fever,
apoptotic cell death, inflammation as well as inhibiting
tumorigenesis. However, dysregulation of TNF-a has
been implicated in a variety of human diseases, includ-
ing cancer, because it activates the nuclear factor kap-
pa-light-chain-enhancer of activated B cells (NF-kB)
pathway, leading to the expression of a variety of in-
flammation-related genes [55, 56]. TNF-a appears to
contribute to the development of the tissue architec-
ture necessary for tumor growth and metastasis [57]. It
has also been shown to induce the production of other
cytokines, angiogenic factors and matrix metalloprotei-
nases (MMPs), which may drive the survival and metas-
tasis of tumor cells [58]. Furthermore, long-term expo-
sure of hormone receptor positive breast cancer cells to
TNF-a induces an epithelial-to-mesenchymal transition
(EMT), a process by which tumor cells lose their cell-to-
cell adhesion and gain migratory properties that facili-
tate metastasis [59].

IL-6. Similarly, IL-6 is an important regulator of immune
cell growth and differentiation. Recent studies demon-
strate that IL-6 regulates chronic inflammation, which
can create a cellular microenvironment conducive to
cancer growth [60]. High concentrations of circulating
IL-6 in obese patients correlate with an increased risk of
developing tumors. The production of the IL-6 recep-
tor/ligand complex activates both Janus kinase (JAK)
and the signal transducer and activator of transcription
3 (STAT3) pathways, which are key regulators of cell
proliferation and apoptosis.

MCP-1. MCP-1 has been shown to recruit macrophages
in both obesity and cancer [61, 62]. MCP-1 levels in adi-
pose tissue and plasma are increased in genetically ob-
ese diabetic (db/db) mice and in wild-type mice fed a
high fat diet [63]. With respect to cancer, stromal MCP-
1 is involved in both tumor progression and metastasis
[64]. Treatment of immunodeficient mice bearing hu-
man breast cancer cells with a neutralizing antibody to
MCP-1 resulted in a significant reduction in macrophage
infiltration, angiogenic activity, and overall tumor vo-
lume [64].

Leptin. In an obese state, leptin resistance causes
hyperphagia, increased adipose tissue volume and
hyperleptinemia, as the body attempts to compensate
for the resistance [65-67]; however, increasing leptin
secretion is ineffective. In fact, it has been shown that
the plasma concentration and mRNA expression of lep-
tin in adipose tissue are directly related to the severity
of obesity [68, 69]. Hyperleptinemia is also partially
responsible for the chronic low-grade inflammation
associated with obesity. Excess leptin results in en-
hanced T-cell and macrophage activation as immune

www.StemCells.com

cells respond to the leptin in the microenvironment.
Leptin also increases the expression of TNF-a, reactive
oxygen-species (ROS) production, MCP-1 expression,
and endothelial cell proliferation and migration. These
factors all increase cancer cell growth and mobility.
PAI-1. PAI-1 is a serine protease inhibitor (serpin) pro-
duced by many different cell types, including endotheli-
al cells, stromal cells, and adipocytes. PAI-1 affects adi-
pocyte differentiation and the expression of PAI-1 in-
creases with higher levels of adiposity [70]. PAI-1 prin-
cipally inhibits urokinase plasminogen activator (uPA),
which acts as an inducer of fibrinolysis and extracellular
matrix degradation [71]. PAI-1 expression is also asso-
ciated with increased tumor cell invasion and metasta-
sis [72], and some studies have shown that PAI-1 is a
poor prognostic indicator for a number of cancers, in-
cluding breast cancer and colon cancer [72, 73].

While most of the studies to date have focused on adi-
pose tissue as a whole, few studies have investigated
the impact of obesity on the ASCs. Due to the chronic
low-grade inflammation within microenvironment of
the adipose tissue, the biology of the ASCs within these
depots may be altered. Studies have shown that obesity
diminishes ASC differentiation potential along adipo-
genic and osteogenic lineages, indicating a possible re-
duction in stem cell properties in cells conditioned by
obese environments [74, 75]. Other studies have indi-
cated that ASCs from obese individuals promote luminal
breast cancer cell proliferation, angiogenesis, and me-
tastasis [76-78].

ASCs in the Tumor Stroma

The tumor stroma is composed of numerous cell types
(immune system cells, fibroblasts, myofibroblasts, and
vascular cells). One of the key cell types is the cancer-
associated fibroblast (CAF). The number of CAFs in-
creases with the aggressiveness of the cancer [79-82].
CAFs demonstrate similar characteristics as myofibrob-
lasts and express alpha-smooth muscle actin (a-SMA),
tenascin-C, nestin, neural/glial antigen 2 (NG2), and
PDGFR-a [83, 84]. It has been shown that ASCs are re-
cruited to the tumor, transition into CAFs, and then
integrate into the stroma [85-87]. Recent data indicates
that ASCs that have been exposed to cancer cells or
tumor cell conditioned media express tenascin-C and a-
SMA, which are characteristic of CAFs, and may provide
some insights into their role in the tumor stroma [87].
The recruited ASCs can also stimulate tumor growth,
promote angiogenesis, and increase cancer cell invasion
[88-90]. When ASCs are exposed to exosomes from
breast cancer cells, they increase the expression of tu-
mor-promoting factors, such as stromal cell-derived
factor 1 (SDF-1), vascular endothelial growth factor
(VEGF), chemokine ligand 5 (CCL5), platelet-derived
growth factor D (PDGF-D), and transforming growth
factor beta (TGF-B) [85-87, 91-93]. This phenomenon
correlated with the increased expression of TGF-§3 re-
ceptors and phosphorylation of key factors in the TGF-3
receptor-mediated SMAD pathway in ASCs [85, 86].
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Consequently, these ASCs promote cancer cell growth
and stimulate metastasis [94]. In vivo studies have con-
firmed that simultaneous co-injection of primary breast
cancer and ASCs into nude mice results in integration of
ASCs into the tumor stroma, thereby increasing tumor
volume and increasing the vascularity of the tumor [95-
97].

Other studies have demonstrated that ASCs stimulate
invasion and metastasis of cancer cells. Recent evidence
demonstrated that ASCs enhanced the migration of
several types of cancer: breast, colon, prostate, gastric,
and head and neck tumors [95, 98-101]. Data from Mu-
ehlberg and colleagues indicated that implanting sphe-
roids formed with breast cancer cells and ASCs into
nude mice increased the number of lung metastases
[102]. Together, these studies suggest that cancer cells
can recruit ASCs to the tumor microenvironment, which
in turn increases cancer cell proliferation and metasta-
sis.

Mechanisms of ASC induced alterations in

cancer cells and tumorigenesis

Breast cancer. While many studies have described the
interaction between ASCs and breast cancer cells, only
recently have studies extensively explored the mechan-
ism by which this interaction occurs. ASCs stimulated by
cancer cells secrete a wide range of cytokine, chemo-
kines, and growth factors that, in turn, increase the pro-
liferation of breast cancer cells in an ASC/cancer cell
reciprocal feedback loop (Figure 1) [74]. More specifi-
cally, cancer cells activate ASCs to secrete SDF-1, which
then binds to its receptor CXCR4 on breast cancer cells
and induces cellular proliferation through protein ki-
nase B (AKT), extracellular signal-regulated kinases 1/2
(ERK1/2), and Janus kinase- signal transducer and acti-
vator of transcription 3 (JAK2-STAT3) [102]. Potter and
colleagues showed that ASCs induced the expression of
chemokine (C-C motif) ligand 2 (CCL2), ETS domain-
containing protein (ELK1), Ezrin (VIL2), and MMP-11 in
primary epithelial cells and breast cancer cell lines, lead-
ing to increased tumor volume, neoangiogenesis, and
epithelial cell migration [103].

A primary role for ASCs in the microenvironment is their
ability to induce EMT and promote metastasis. Devara-
jan et al. found that ASC conditioned media induced
expression of fibronectin, a-SMA, and vimentin in
breast cancer cells, which are markers of EMT [91].
These results correlated with increased expansion of
CD44"8"/CD24"" cancer stem cells and anchorage-
independent growth of cancer cells, leading to EMT of
cancer cells [91]. Furthermore, Pinilla and colleagues
described the association between CCL5 secretion by
ASCs and elevated levels of MMP-9 activity within the
tumor microenvironment, leading to increased tumor
invasion. ASC-derived IL-6 and IL-8 have also been
shown to increase migration, invasion, and anchorage-
independent growth of breast cancer cell lines, includ-
ing MDA-MB-231, T47D, and MCF7 cells [84, 100].
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Colorectal cancer. While limited information on the
effects of ASCs on colorectal cancer cells exists, studies
have provided some insights on the interactions be-
tween ASCs and colorectal cancer cell proliferation,
neoangiogenesis, and efficacy of chemotherapy agents.
ASCs that underwent conversion to CAFs have been
shown to release a variety of growth factors and cyto-
kines, including SDF-1, IL-6 and VEGF that enhance the
growth of colorectal cancer cells (Figure 1)[104-106].
Similar to breast cancer cells, SDF-1 elicits its effects
through activation of CXCR4. This SDF-1/CXCR4 axis
regulates phosphoinositide 3-kinase (PI3K/AKT), mito-
gen-activated protein kinase (MAPK), and uPA cascades,
which ultimately alters chemotaxis, angiogenesis, and
tumor metastasis in colorectal cancer cells [104-106].
Additional cytokines and chemokines secreted by ASCs
into the tumor microenvironment increase the survival
of the cancer cells [107]. For example, studies have
demonstrated that ASCs secrete sufficient VEGF and IL-
6 to induce neoangiogenesis, which is necessary to pro-
vide sufficient nutrients to the growing tumor [108].
Inhibition of VEGF or IL-6 leads to reduced angiogenesis
and inhibition of tumor growth [109].

ASCs can also induce chemoresistance in colorectal can-
cer cells. These cells have been shown to become acti-
vated during treatment with platinum analogs and se-
crete factors that protect tumor cells against a variety
of chemotherapeutic drugs [110, 111]. Distinct plati-
num-induced polyunsaturated fatty acids in minute
quantities induced cancer cell resistance to a broad
spectrum of chemotherapeutic agents [111]. Additional
studies suggest that the secretion of interleukin 17 (IL-
17) from ASCs, in response to chemotherapeutic agents,
leads to chemoresistance and thus increases the num-
ber of colorectal cancer cells [112].

Prostate cancer. In prostate cancer, ASCs have been
implicated in altering the gene expression profile of
cancer cells, inducing a more aggressive phenotype, and
increasing angiogenesis within the tumor (Figure 1)
[92]. The number of ASCs was increased in cancer pa-
tients compared to prostatic nodular hyperplasia pa-
tients [99]. The ASCs are converted into CAFs and pro-
vide nutrients and support for the growing tumor. Ri-
beiro and colleagues found that adipose tissue and ASCs
exposed to conditioned media from PC3 cells (prostate
cancer cell line) had an altered adipokine expression
profile, including increased osteopontin, TNF-a, and IL-6
[113]. These factors have been implicated in prostate
cancer tumorigenicity and metastasis [114-117]. Pros-
tate cancer cells co-injected with ASCs into nude mice
caused increased tumor volume. The local delivery of
oncostatin M exacerbated the effect of ASCs on pros-
tate cancer cell proliferation and tumor volumes
doubled in size [118]. Other studies have shown that
ASCs mediate their effects via the SDF-1/CXCR4 axis.
ASC-secreted SDF-1 increases the levels of CXCR4 that
result in a more aggressive prostate cancer cell pheno-
type [101, 119]. ASCs have also been shown to increase
capillary density as evidenced by increased expression
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of VEGF, basic fibroblast growth factor (FGF2) and CD31
[101, 120]. There is emerging evidence that suggests
ASCs primed with prostate cancer conditioned media
can undergo neoplastic transformation, and these ASCs
form prostate-like neoplastic lesions in vivo and pro-
duce aggressive tumors upon serial transplantation
[121]. Additional studies will be necessary to determine
the precise mechanism by which these primed ASCs
undergo neoplastic transformation.

Obesity induced alterations to ASCs

Studies have shown that ASCs isolated from obese
women have an increased potential to traffic to the
tumor compared to the ASCs isolated from lean women
[77]. Furthermore, studies investigating the impact of
obesity on ASC have observed increase recruitment of
ASCs to the tumor in obese, resulting in an increase in
the number of circulating ASCs [77, 122]. Zhang and
colleagues revealed that a higher number of ASCs could
be isolated from the WAT of obese mice compared to
lean mice, possibly due to increased volume of WAT in
obese mice [122]. These studies have shown that once
localized to the tumor microenvironment, the mobilized
ASCs enhanced the tumor vasculature by transdifferen-
tiation into perivascular cells and incorporating into the
tumor microenvironment [122]. With more ASCs re-
cruited to the tumor site in obese mice, the perivascular
cells are able to provide oxygen and nutrients to the
tumor, enhancing survival and limiting apoptosis of can-
cer cells (Figure 2) [122]. Consistent with Zhang et al.,
Bellows and colleagues found increased frequency of
ASCs in the circulation of obese patients, compared to
lean patients [123, 124].

Additional studies have shown that ASCs from obese
women (obese ASCs) enhanced the proliferation of
breast cancer cells in vitro (Figure 2) [78]. Interestingly,
this phenomenon was restricted to ER" breast cancer
cells, suggesting that ASCs may act through an estro-
gen-mediated pathway [78]. These obese ASCs also
express higher levels of leptin when they are stimulated
with estrogen, suggesting an estrogen-mediated leptin-
response [78]. Inhibiting leptin expression using a leptin
neutralizing antibody reduced the impact of obese ASCs
on breast cancer cell proliferation in vitro [78]. Fur-
thermore, obese ASCs have been shown to alter the
expression of several key regulatory genes involved in
the cell cycle, apoptosis, angiogenesis, EMT, and metas-
tasis [78]. The expressions of these molecular markers
in breast cancer are associated with poorer prognosis
due to increased invasion and metastasis of breast can-
cer cells to distant organs [125-129]. These studies sug-
gest the source of leptin within the microenvironment is
the ASCs, and robust secretion of leptin by ASCs can
promote cancer cell growth and progression.

Delivery of leptin to cancer cells either in vitro or in vivo
has also demonstrated increased proliferation, migra-
tion, invasion, angiogenesis, and metastasis of the cells
[130-132]. Pre-neoplastic colon epithelial cells exposed
to leptin upregulated VEGF expression, resulting in
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VEGF-driven angiogenesis and vascular development
[133]. In breast cancer cells, leptin functions through
the JAK2-STAT3, PI3K-AKT, ERK1/2, and activator pro-
tein 1 (AP-1) pathways, increasing the expression of
proteolytic enzymes that are required in tumor growth,
metastasis and neoangiogenesis [134-136]. In estrogen
receptor-positive human breast cancer cell lines, leptin
has been shown to exert its influence through the acti-
vation of the MAPK pathway [136]. Thus, high levels of
leptin resulting from obesity may result in increased
breast cancer incidence. In addition, future research on
this topic should provide clues to the therapeutic po-
tential of anti-leptin strategies.

CONCLUSIONS

Obesity is a major public health concern because it in-
creases the risk of several debilitating and deadly dis-
eases, including cancer [137]. While intense discussions
on the mechanism(s) by which obesity impacts cancer
are ongoing, recent studies suggest that ASCs, altered
by obesity, integrate into the tumor stroma and provide
support for the growing tumor. Numerous genes are
differentially expressed in ASCs isolated from obese
patients compared to those from lean patients. The
data suggests that ASCs isolated from obese patients
have an increased potential to assist cancer cells. Fur-
thermore, the number of circulating ASCs in obese pa-
tients was significantly higher than in lean patients,
which in turn may increase the opportunity for ASCs to
home to tumors. Once recruited to the growing tumor,
ASCs isolated from obese women not only produce a
novel chemokine and cytokine repertoire but also ex-
press higher levels of chemokines and cytokines that
further drive cancer cell proliferation and migration,
tumor migration and invasion, and metastasis to distant
organs.

While the body of literature presented in this review
provides insight into our current understanding of the
ASCs in the tumor stroma and the effects of obesity
within this intricate microenvironment, further investi-
gations are required. Future studies focused around the
effects of obesity on ASCs and understand how obesity
primes the ASCs resulting in increased tumorigenesis
and/or metastasis will provide valuable insight to reduc-
ing cancer morbidity and mortality. Studies have also
investigated the use of ASCs as vehicles for gene thera-
py and have gained significant attention [138-140].
Therefore, it is essential to identify the mechanism(s) by
which ASCs influence cancer cells, since novel therapeu-
tic targets can be developed to target ASCs and inhibit
the growth and metastasis of cancer cells.
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Figure 1. Model of the tumor-promoting effects of CAFs formed from ASCs. (A) Cancer cells secrete a wide range of
cytokines, chemokines, and growth factors that play a role in the recruitment of several different cell types into the
tumor. The tumor microenvironment is composed of cancer cells, endothelial cells, adipose stromal cells (ASCs), can-
cer associated fibroblasts (CAFs), and immune cells. (B) A reciprocal and circular feedback loop between cancer cells
and ASCs is initiated by the secretion of cytokines from cancer cells. These cytokines activate ASCs, resulting in the
conversion of ASCs into CAFs as noted by the increased expression in alpha-smooth muscle actin (a-SMA), tenascin-C,
nestin, neuro-glial antigen 2, and platelet derived growth factor receptor-alpha (PDGFR-a). In turn, the CAFs secrete
cytokines and chemokines that alter cancer cells, leading to an increase in the number of cancer cells, increased inva-
sive potential of cancer cells, and potentially increased chemoresistance of cancer cells. (C) Cancer cells recruit ASCs
into the microenvironment and induce their transformation into CAFs. This cellular conversion results in secretion of
cytokines, chemokines, growth factors, and enzymes that enhance cancer cell proliferation, induce EMT and the me-
tastasis of cancer cells to distant sites.
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Figure 2. Model for the role of obesity in promoting tumorigenesis and cancer progression. The accumulation of adi-
pose tissue in obese individuals, results in formation of an hypoxic environment surrounding adipocytes more distal
to blood vessels. Consequently, the adipose tissue releases angiogenic factors that circulate through the vasculature
to combat the hypoxia. The hypoxic environment also results in significant inflammation, which results in the secre-
tion of pro-inflammatory cytokines. The secretion of pro-inflammatory cytokines within the adipose tissue microenvi-
ronment may, in turn, alter the tissue-resident stem cells (ASCs). The production of angiogenic factors, the secretion
of inflammatory cytokines, and the perturbations to ASCs promote a microenvironment favorable for tumorigenesis
and cancer progression.
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